August 14, 2022

Dubai Week

Complete Dubai News World

A spectacular shock wave from a rejected star blasts through space at 100,000 miles per hour

Zeta Oviucci was once in close orbit with another star, before it was ejected when the companion was destroyed in a supernova explosion. Infrared data from Spitzer reveal a shock wave formed from the explosion from the star’s surface and hitting the gas in its path. Data from Chandra show a bubble of X-ray emission around the star, produced by gas heated to tens of thousands of degrees by the shock wave. Chandra’s data help tell more about this wild star’s story. Credit: X-ray: NASA/CXC/Univ. Cambridge / C. Cesc Raines and others; Radio: NSF/NRAO/VLA; Optics: PanSTARRS

  • Zeta Ophiuchi is a single star that once had a companion that was destroyed when it was hit by a supernova.
  • The supernova explosion sent Zeta Ophiuchi into space as seen in Spitzer (in green and red) and Chandra data (in blue).
  • X-rays detected by Chandra originate from gas heated to millions of degrees by shock wave effects.
  • Scientists are working to fit computational models of this material to explain data obtained at different wavelengths.

Zeta Ophiuchi is a star with a complicated past, as it may have been ejected from its home planet by a powerful stellar explosion. A new comprehensive look[{” attribute=””>NASA’s Chandra X-ray Observatory helps tell more of the history of this runaway star.

Located approximately 440 light-years from Earth, Zeta Ophiuchi is a hot star that is about 20 times more massive than the Sun. Evidence that Zeta Ophiuchi was once in close orbit with another star, before being ejected at about 100,000 miles per hour when this companion was destroyed in a supernova explosion over a million years ago has been provided by previous observations.

See also  Cheap Price Redmi Note 11 Redmi Note 11 Phone Specifications, Features and Disadvantages

In fact, previously released infrared data from NASA’s now-retired Spitzer Space Telescope, seen in this new composite image, reveals a spectacular shock wave (red and green) that was formed by matter blowing away from the star’s surface and slamming into gas in its path. A bubble of X-ray emission (blue) located around the star, produced by gas that has been heated by the effects of the shock wave to tens of millions of degrees, is revealed by data from Chandra.

A team of astronomers has constructed the first detailed computer models of the shock wave. They have begun testing whether the models can explain the data obtained at different wavelengths, including X-ray, infrared, optical, and radio observations. All three of the different computer models predict fainter X-ray emissions than observed. In addition, the bubble of X-ray emission is brightest near the star, whereas two of the three computer models predict the X-ray emission should be brighter near the shock wave. The team of astronomers was led by Samuel Green from the Dublin Institute for Advanced Studies in Ireland.؟v=t2w5nq9cU9A

في المستقبل ، يخطط هؤلاء العلماء لاختبار نماذج أكثر تعقيدًا بفيزياء إضافية – بما في ذلك تأثيرات الاضطراب وتسريع الجسيمات – لمعرفة ما إذا كان الاتفاق مع بيانات الأشعة السينية سيتحسن.

تم قبول ورقة تصف هذه النتائج في المجلة علم الفلك والفيزياء الفلكية. تم تحليل بيانات شاندرا المستخدمة هنا في الأصل بواسطة Jesús Toala من معهد الفيزياء الفلكية في الأندلس في إسبانيا ، والذي كتب أيضًا الاقتراح الذي أدى إلى الملاحظات.

المرجع: “الانبعاث الحراري من صدمات القوس. II. نماذج مغناطيسية هيدروديناميكية ثلاثية الأبعاد لزيتا أوفيوتشي “بقلم S. Green و J. Mackey و P. Kavanagh و TJ Haworth و M. Moutzouri و VV Gvaramadze ، مقبول ، علم الفلك والفيزياء الفلكية.
DOI: 10.1051 / 0004-6361 / 202243531

See also  Scientists have detected radio pulses billions of light years away from Earth

يدير مركز مارشال لرحلات الفضاء التابع لناسا برنامج شاندرا. يتحكم مركز شاندرا للأشعة السينية التابع لمرصد سميثسونيان للفيزياء الفلكية في العمليات العلمية من كامبريدج ، ماساتشوستس ، وعمليات الطيران من بيرلينجتون ، ماساتشوستس.